1.冯诺依曼的简历

苏黎世天气预报30天查询_苏黎世天气预报

1、烟雾探测器?

这里用一个设的“你”做比喻。早晨当你从下榻的宾馆起来,走出房间准备晨练时,请注意你头上的烟雾探测器。它利用放射性物质镅-241释放出能量,产生一小束带电粒子。一旦发生意外,从火焰里冒出来的烟雾与粒子束发生反应,触动警报器自动拉响。

由于镅的原子核不稳定,一旦裂开,质量似乎就消失了一些,因为碎片的质量比原来的原子核小。其实,镅原子的质量根本没有消失。这是爱因斯坦告诉我们的。

2、平坦的公路

回到家后你要开车去上班,你车轮下的平坦公路里也刻着爱因斯坦的功劳。在爱因斯坦的博士论文中探讨了在不同溶液中测量分子的新方法,这些方法后来成为胶体化学的基本方法。

建材工程师在建造公路时,就是利用他的研究成果。

3、电脑显示器

来到办公室,你打开电脑开始工作。在短促的瞬间,电子正从显像管的阴极发射出来,好像在飞驰过程中获得了能量,积聚在显示屏上———这正好符合爱因斯坦的狭义相对论。

发明电脑显示器的工程师必须使显示器符合“相对论效应”,否则控制电子飞驰的磁铁就会在显示屏上产生模糊图像,使你无法工作,当然,精彩的电脑游戏也玩不起来了。

4、精准的激光

下班后你到超市购物,你手里的每一件商品条形码也得益于爱因斯坦的激光理论,只有激光才能准确读出条形码中的编码。

5、太阳能电池?

如你想用太阳能光电池为自己的居室提供能量。这些光电池能够把太阳能转成电能,爱因斯坦在90年前发表的一篇论文里就首次正确地分析过这一转换原理。

他发现光子具有能量。某些光子携带的能量足以克服将电子集中于某种金属的“粘性”,这就是著名的光电效应。

6、数码相机

星期天,你会和家人轻松郊游。当你打开数码相机,准备摄下家人温馨的笑容时,要先感谢爱因斯坦。从镜头飞进来的光子会把半导体里的电子挤走,这同样利用了宝贵的光电效应。

7、药物

倘若你身体有点小毛病,需要药物调理。许多药物制造得益于爱因斯坦那篇有关布朗运动的论文。

英国植物学家罗伯特·布朗最先观察到,悬浮的液体中的微粒永远不停地做无规则运动。爱因斯坦则利用布朗运动创立了将微观数量和宏观数量联系在一起的统计法。

直到今天,这些统计法仍是全世界药剂师必须遵循的配比法则。

全球定位系统 万一**中了大奖,得意忘形的你不幸成为寻人启事中主角,那也没有关系,你身上携带的GPS(全球定位系统)能帮助你与搜索人员取得联系。

100年前爱因斯坦发现,如果想把发生在不同地点的多个联系在一起考虑,那么传统的时间概念就不够充分。

虽然全球定位系统卫星上安装了精确的原子钟,但是,如果没有地面原子钟对卫星原子钟的时间调整,定位系统每天发给地面的信号就会出现1.6千米的偏差。

8、控制X射线的能量

你长了一个肿瘤,幸亏是良性的,但因长在胸腺上,手术后需要放射治疗。医生在为你实施放射治疗前,需要估计X射线可能对你细胞造成的伤害,根据就是爱因斯坦的E=mc2。

扩展资料:

爱因斯坦简介:

阿尔伯特·爱因斯坦(Albert.Einstein,1879年3月14日—1955年4月18日),出生于德国符腾堡王国乌尔姆市,毕业于苏黎世联邦理工学院,犹太裔物理学家。

爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。

1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,1905年创立狭义相对论。1915年创立广义相对论。1955年4月18日去世,享年76岁。

爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。

参考资料:

百度百科阿尔伯特·爱因斯坦

冯诺依曼的简历

很明显,太阳是地球上光、热和生命本身的源泉。甚至在史

前时代,人类就必定会把太阳当做神来崇拜,我们所知道的第一

个一神论者,是公元前1379年取得埃及王位的法老埃赫那顿,他

就把太阳当做惟一的神。在中世纪时代,太阳是完美的象征,虽

然它本身没有被认为是神,但无疑地认为它代表着上帝的完美。

最早对太阳的实际距离有概念的是古希腊人。阿利斯塔克的

观测指出,太阳离我们至少有数百万公里远,因此根据肉眼所见

的大小来判断,它必然比地球大。然而只是大小尚不能给人以深

刻的印象,因为很容易把太阳设想成是一个仅由非实体的光所构

成的大球。

直到牛顿时代才知道,太阳不仅比地球大,它的质量也远超

过地球。同时还知道,地球精确地沿一定的轨道绕太阳运行,是

因为地球受到太阳的强大的引力场的影响。我们现在知道,太阳

距离地球1.5×108公里;直径1,392,000公里,是地球直径的 110 倍。

它的质量是地球的33万倍,也是太阳系所有行星物质总和的745倍。

换句话说,太阳占有太阳系中99.86%的物质,是这个系统中压倒

一切的首领。

然而我们不应当过分注重它的大小;其实它并不是一个完美

的天体——如果我们像中世纪的学者们那样,把完美定义为亮度

均匀和毫无斑点的话。

在1610年将近年底的时候,伽利略用他的望远镜在黄昏的雾

霭中观察太阳,结果每天都在日轮上看到深色的黑子。根据这些

黑子横过太阳表面稳定前进,以及它们在接近太阳边缘的过程中

缩短的情形,伽利略断定,这些黑子是太阳表面的一部分,同时

推断,太阳在略多于25个地球日的时间内绕自己的轴自转一周。

当然,伽利略的发现遭到强烈的反对;因为根据古老的观念,

这简直就是对神明的亵读。德国天文学家席纳尔也观察到了这些

黑子,不过他认为,这些黑子并不是太阳的一部分,而是一些绕

太阳旋转的小天体,只不过在明亮的日轮的衬托下显得较为黑暗

而已,但是伽利略获得了这场争辩的胜利。

1747年,苏格兰天文学家威尔逊在靠近太阳边缘的地方看到

了一个太阳黑子,当从侧面看的时候,有些内凹,仿佛是太阳上

的一个火山口。这一点在1795年被W·赫歇耳所纳。W·赫歇

耳认为,太阳是一个既黑暗又寒冷的天体,被一层燃烧着的气体

包围着。按照这一观点,太阳黑子则是一些洞,透过这些洞可以

看到里面那个寒冷的天体。W·赫歇尔猜测,那个寒冷的天体上

可能有一些有生命的东西居住着。(请注意,优秀的科学家也会

提出一些鲁莽的理论,这些理论在当时的知识背景之下,似乎是

合理的,但是随着日后更多证据的累积,终于被证明原来是非常

荒唐的错误。)

实际上,太阳黑子并不真正是黑色的。它们是太阳表面上一

些比较冷的区域,所以看上去显得比较暗。然而,如果水星或金

星运行到地球和太阳之间的话,都会在日轮上显出一个真正的小

黑圆圈。如果这个圆圈移动到一个太阳黑子附近,人们就会发现

太阳黑子其实并不真正是黑色的。

然而即使是完全错误的观点也会有用,因为W·赫歇耳的看

法使人们增加了对太阳黑子的兴趣。

癖好天文学的德国药剂师施瓦贝在这个问题上却有了真正的

突破。由于他白天整天工作,无法晚上熬夜来看星星,便设法给

自己找一件白天能做的事,最后决定观察日轮,寻找接近太阳的

行星,行星从太阳前面经过,可以证实这些行星的存在。

1825年,他开始观察太阳,因而经常看到太阳黑子。过了一

段时间以后,他把行星的事丢到了脑后而开始描绘这些每天都改

变位置和形状的太阳黑子。只要不是全阴天,他就天天观察太阳,

一直坚持了17年之久。

到了1843年,他非常有把握地宣称,这些太阳黑子并不是随

意出现的,而是有一个周期,年复一年,太阳黑子愈来愈多;一

直达到一个顶峰;然后数量逐渐减少,直到几乎没有;于是一个

新的周期再度开始。我们现在知道,这个周期有点不规则,但平

均起来大约是11年。施瓦贝的发现并没有受到重视(毕竟,他

只是个药剂师);直到著名的科学家洪堡1851年在他的一部科学

著作《宇宙》中提到这个周期之后;才为人们所接受。

此时,苏格兰血统的德国天文学家拉蒙特在测量地球的磁场

强度。他发现地球磁场的强度有规律地上升和下降。1852年,美

国物理学家赛宾指出,这个周期与太阳黑子的周期时间相合。

这样看来,太阳黑子对地球有影响,因而人们开始怀着浓厚

的兴趣研究太阳黑子。每年都根据一个公式给出一个苏黎世太阳

黑子数,这个公式是在苏黎世工作的瑞士天文学家沃尔夫1849年

首先提出的。(他还率先指出,极光发生率的升降也与太阳黑子

的周期合拍。)

太阳黑子似乎与太阳的磁场有关,并且似乎出现在磁力线的

出射点上。1908年,在发现太阳黑子3个世纪之后,海耳探测到

一个与太阳黑子相联系的强力磁场。太阳的磁场为什么会有那些

表现,为什么会在不固定的时间和地点出现在太阳表面上,为什

么其强度会随着某些不规则的周期而增减?这些问题到目前为止

仍属于未能解决的太阳之谜。

1893年,美国天文学家蒙德为了建立伽利略发现太阳黑子后

的第一个世纪中太阳黑子周期的资料,检查了所有早期的报告。

他惊讶地发现,在1645年——1715年竟然没有有关太阳黑子的报

告。诸如J·D·卡西尼等重要天文学家都寻找过太阳黑子,并

对他们一个黑子也没有找到的事发表过评论。蒙德1894年将此发

现予以公布,1922年再次公布,但是,他的工作没有受到重视。

太阳黑子的周期已经被证实得如此充分,以致要说有一段70年的

时间几乎没有太阳黑子出现,这似乎是难以令人相信的。

20世纪70年代,美国天文学家埃迪无意中发现了这份报告,

经仔细检查,发现的确有所谓的蒙德极小期。他不仅重复了蒙德

的研究,而且调查了从包括远东在内的许多地区收集来的用肉眼

观测到的特大太阳黑子的报告——这些都是蒙德未得到的资料。

这些纪录追溯到公元前5世纪,通常每个世纪有5~10次的观测记

录。在这中间也有间断,其中一次间断跨越了蒙德极小期。

埃迪还检查了关于极光的报告。极光的频率和强度以太阳黑

子的周期升降。结果表明,1715年以后这种报告很多,1645年以

前也不少,但是在1645年——1715年却一份也没有。

再者,当太阳磁场活跃并有许多太阳黑子时,日冕会充满日

冕射线而显得非常美丽。当缺乏太阳黑子时,日冕看起来像是毫

无特色的烟雾。日冕在日食时可以看到;尽管在17世纪天文学家

很少旅行去观察日食,但是,在蒙德极小期期间同样存在着日食

报告,这样的报告讲的一律都是没有或很少有太阳黑子时的那一

类日冕。

最后,在黑子极大期之时,会发生一连串的,使碳-14

的产量比平常低。因此,可以分析树木年轮中碳14的含量,以碳

14含量的升降来判断太阳黑子的极大期或极小期。这种分析也证

明了蒙德极小期的存在,实际上,在更早的一些世纪中已有许多

个蒙德极小期。

埃迪的报告指出,在最近的5000年内大约有12个周期,而每

次蒙德极小期持续的时间从50年—200年不等。 例如,在1400年

—1510年就有一个蒙德极小期。

既然太阳黑子的周期对地球有影响,我们或许会问,蒙德极

小期对地球有什么影响?这个影响可以说与冷期有关。在17世纪

的第一个10年当中,欧洲的冬天非常寒冷,以致被称为小冰河时

期。在1400—l510年的蒙德极小期期间也很寒冷,当时格陵兰岛

上的挪威移民都消失了,因为天气冷得简直无法生存。

约翰·冯·诺依曼

20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".而在经济学方面,他也有突破性成就,被誉为“博弈论之父”。在物理领域,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值。在化学方面也有相当的造诣,曾获苏黎世高等技术学院化学系大学学位。与同为犹太人的哈耶克一样,他无愧是上世纪最伟大的全才之一。

约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年他成为美国普林斯顿大学的第一批终身教授,那时,他还不到30岁。1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会.

1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.

冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.

1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对算子代数进行了开创性工作,并奠定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.

冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.

现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接几天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.

1944年,诺伊曼参加的研制工作,该工作涉及到极为困难的计算。在对原子核反应过程的研究中,要对一个反应的传播做出“是”或“否”的回答。解决这一问题通常需要通过几十亿次的数算和逻辑指令,尽管最终的数据并不要求十分精确,但所有的中间运算过程均不可缺少,且要尽可能保持准确。他所在的洛·斯阿拉莫斯实验室为此聘用了一百多名女计算员,利用台式计算机从早到晚计算,还是远远不能满足需要。无穷无尽的数字和逻辑指令如同沙漠一样把人的智慧和精力吸尽。

被计算机所困扰的诺伊曼在一次极为偶然的机会中知道了ENIAC计算机的研制,从此他投身到计算机研制这一宏伟的事业中,建立了一生中最大的丰功伟绩。

1944年夏的一天,正在火车站候车的诺伊曼巧遇戈尔斯坦,并同他进行了短暂的交谈。当时,戈尔斯坦是美国弹道实验室的军方负责人,他正参与ENIAC计算机的研制工作。在交谈在,戈尔斯坦告诉了诺伊曼有关ENIAC的研制情况。具有远见卓识的诺伊曼为这一研制所吸引,他意识到了这项工作的深远意义。

冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力。诺伊曼以“关于EDVAC的报告草案”为题,起草了长达101页的总结报告。报告广泛而具体地介绍了制造电子计算机和程序设计的新思想。这份报告是计算机发展史上一个划时代的文献,它向世界宣告:电子计算机的时代开始了。

EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.报告中,诺伊曼对EDVAC中的两大设计思想作了进一步的论证,为计算机的设计树立了一座里程碑。

设计思想之一是二进制,他根据电子元件双稳工作的特点,建议在电子计算机中用二进制。报告提到了二进制的优点,并预言,二进制的用将大简化机器的逻辑线路。

实践证明了诺伊曼预言的正确性。如今,逻辑代数的应用已成为设计电子计算机的重要手段,在EDVAC中用的主要逻辑线路也一直沿用着,只是对实现逻辑线路的工程方法和逻辑电路的分析方法作了改进。

程序内存是诺伊曼的另一杰作。通过对ENIAC的考察,诺伊曼敏锐地抓住了它的最大弱点--没有真正的存储器。ENIAC只在20个暂存器,它的程序是外插型的,指令存储在计算机的其他电路中。这样,解题之前,必需先相好所需的全部指令,通过手工把相应的电路联通。这种准备工作要花几小时甚至几天时间,而计算本身只需几分钟。计算的高速与程序的手工存在着很大的矛盾。

针对这个问题,诺伊曼提出了程序内存的思想:把运算程序存在机器的存储器中,程序设计员只需要在存储器中寻找运算指令,机器就会自行计算,这样,就不必每个问题都重新编程,从而大大加快了运算进程。这一思想标志着自动运算的实现,标志着电子计算机的成熟,已成为电子计算机设计的基本原则。

1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想.

冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获的功勋奖章、美国海军优秀公民服务奖;1956年获的自由奖章和爱因斯坦纪念奖以及费米奖.

冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版.

另外,冯·诺依曼40年代出版的著作《博弈论和经济行为》,使他在经济学和决策科学领域竖起了一块丰碑。他被经济学家公认为博弈论之父。当时年轻的约翰·纳什在普林斯顿求学期间开始研究发展这一领域,并在1994年凭借对博弈论的突出贡献获得了诺贝尔经济学奖。